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We study a one-dimensional continuum model for lipid bilayers. The system consists of water

and lipid molecules; lipid molecules are represented by two ‘beads’, a head bead and a tail

bead, connected by a rigid rod. We derive a simplified model for such a system, in which

we only take into account the effects of entropy and hydrophilic/hydrophobic interactions.

We show that for this simple model membrane-like structures exist for certain choices of the

parameters, and numerical calculations suggest that they are stable.

1 Introduction

Lipid bilayers, biological membranes, are the cell’s main separating structure. They shield

the interior of the cell from the outside and divide the intracellular space into compart-

ments. In many places the concentration of chemical species differs across the membrane,

a fact that is essential to cellular metabolism.

The main component is a lipid molecule (Figure 1), which consists of a head and two

tails. The head is usually charged and hydrophilic, while the tails are hydrophobic. This

difference in water affinity causes lipids to aggregate, and in the biological setting the

lipids are typically found in a bilayer structure as shown in Figure 1. In such a structure

the energetically unfavorable tail-water interactions are avoided by grouping the tails

together in a water-free zone, shielded from the water by the heads. While for other

amphiphilic molecules spherical or linear arrangements are also possible, most lipids have

a preference for planar structures.

Our interest in lipid bilayers stems from a remarkable combination of properties:

• On the molecular level, the particles are unlinked – there are no chemical bonds between

any two lipids.

• On the higher organizational level of the membrane, the ‘material’ constituting the

membrane has certain solid-like properties: it resists bending, stretching, and fracture,

much like a sheet of plastic does. In addition, a lipid bilayer presents a barrier for

diffusion of various other particles.

The basic question that underlies this paper is, therefore, how do unlinked particles flock

together to produce this stable structure? This question needs some specification.

• It is clear that the hydrophobic effect is important in causing the lipids to aggregate,

but this effect alone does not explain the two-dimensional structure. For instance, both
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Figure 1. A section of a lipid bilayer.

a lipid/water and a generic oil/water mixture show aggregation, but while a membrane

structure consisting of lipids is stable, a similar structure made of oil molecules is not.

Which aspect, then, of the lipid molecules is responsible for the two-dimensionality?

Is it the geometry, the charged heads, the hydrophilic nature of the heads, or maybe

something else? And why, and how?

• It is known experimentally that by changing the ratio of head size to tail size a preference

for bilayers can be changed into e.g. a preference for micelles (small spheres consisting

of lipids with their tails pointing inwards). Can we understand this dependence on

head/tail ratio? Which other factors determine this preference?

Current models of membranes tend to be either of the particle type, such as molecular

dynamics or Monte Carlo methods (e.g. see Marrink et al. (2001) as an example), or of the

Helfrich surface type (e.g. Lipowsky & Sackmann, 1995). Particle-based modelling allows

for a very detailed representation of the molecular properties and interactions, but is not

a convenient framework for analysis. Helfrich-type surface models completely bypass the

question of aggregation by imposing the two-dimensionality a priori.

In this paper we introduce a simple continuum model in the spirit of reaction-diffusion

systems. The unknowns are densities of particles that diffuse and interact. By a symmetry

reduction to one space dimension the system becomes amenable to analysis. We do not

claim that this model describes actual lipid bilayer behaviour in any detail; this work

should be viewed as a study of principle, in which we try to identify the elements in a

simple model that are relevant to the questions above. More specifically, we show that the

model produces a localized structure of well-defined width that resists perturbation even

though it consists of freely diffusing particles.

We introduce the model in § 2 and then derive the equations satisfied by solutions (§ 3).

In § 4–5 we discuss the existence of membrane-like structures, and study their dependence

on the parameters. We then investigate a semi-explicit solution (§ 6) and present some

numerical results (§ 7).

2 A simplified one-dimensional model

The one-dimensional model of this paper is a simplified version of the three-dimensional

model described in Appendix A. The lipid and water molecules are represented by ‘beads’:
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Figure 2. In the simplified model of this paper the lipid molecule is represented by head and

tail beads, connected by a rigid rod.
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Figure 3. Schematic diagram of a ‘membrane’. The graphs show concentrations as a function of

x, the coordinate orthogonal to the membrane. Water bead concentration is not plotted.

water molecules are single beads, and lipid molecules consist of two beads connected by

rigid, mass-less rods (Figure 2).

The single spatial dimension (x) should be thought of as orthogonal to the plane of

a membrane. The rods connecting head and tail beads in the lipids are assumed to lie

parallel to the x-axis; therefore there are two species of lipids, those with the tail pointing

in the positive and those with the tail pointing in the negative x-direction. The unknowns

u and v are the densities of these two species, or to be more precise, the densities of the tail

beads of these two species (Figure 3). If the connecting rod has length ε, the corresponding

head bead volume fractions are the translated fields τ−εu and τεv. The function w is the

density of the water beads. We assume that all beads are of equal size, so that the densities

u, v, and w can also be viewed as volume fractions.

The character of the model is determined by choosing a free-energy functional, which

we then seek to minimize. We choose a combination of entropy, compression energy, and
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interaction energy:1

T

∫
[η(u) + η(v) + η(w)] +

p

2

∫
[1 − u− v − τ−εu− τεv − w]2

+ α

∫
(w + τ−εu+ τεv) κ∗(u+ v), (2.1)

where

η(s) =

{
s log s s � 0

∞ s < 0.

The first integral in (2.1) is the Gibbs–Boltzmann entropy, multiplied by temperature T .

This term is convex and favours spreading of mass. The second integral models the

compression of the mixture, since

u(x) + v(x)︸ ︷︷ ︸
tails

+ τ−εu(x) + τεv(x)︸ ︷︷ ︸
heads

+w(x)︸︷︷︸
water

(2.2)

is the total number of beads at a given position x (we have scaled densities to make

unity the reference density). The constant p characterizes the compressibility. The third

integral is non-convex and will be responsible for the appearance of non-constant energy

minimizers. It penalizes proximity between the tails (with density u + v) and heads and

water (w + τ−εu + τεv). The interaction kernel κ is a model parameter; for the length of

this paper we shall assume that κ is given by

κ(s) =
1

2
e−|s|.

This specific choice allows for the detailed analysis performed in § 6.

In this paper, however, we consider a further simplification of (2.1), by assuming that

the material is incompressible (p = ∞). This implies that the aggregate bead count (2.2)

is constant (scaled to 1), so that w is related to u and v by

w = 1 − u− v − τ−εu− τεv. (2.3)

This allows us to consider u and v as the unknowns in the model. The non-negativity of

w then imposes a constraint on the functions u and v:

u+ v + τ−εu+ τεv � 1. (2.4)

The free energy then reads∫
[η(u) + η(v)] + α

∫
(1 − u− v) κ∗(u+ v), (2.5)

1 The convolution ∗ is defined as

(f ∗ g)(x) =

∫
f(x− y)g(y) dy.
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where the temperature T has been scaled into the coefficient α. Note that in the passage

from (2.1) to (2.5) we have discarded the term modelling the entropy of the water

molecules. The reason for disregarding the water entropy is to make the system amenable

to analysis; we expect that for most modelling questions the effects of this simplification

will be small, and this is an issue that we will return to in future.

3 The minimization problem

We now extract a precise mathematical problem from the preceding discussion, and from

here on we aim for mathematical rigour. We are concerned with unknowns (u, v) that

are functions defined on the real line. Experiments suggest (see § 4 below) considering

functions u and v that converge to a value 0 < c0 < 1/4 at ±∞ (the limit value has to

be the same for u and v; cf. (3.6–3.7)). We therefore introduce the class of admissible

functions

C = {(u, v) ∈ (c0, c0) + L1(�)2 : u+ τ−εu+ v + τεv � 1 a.e.}. (3.1)

The constant c0 is called a background concentration.

The free energy for this system is

F(u, v) =

∫
[ η(u) + η(v) + α(1 − u− v) κ∗(u+ v) − ζ(c0) ] . (3.2)

where the constant ζ(c0) = 2η(c0) + αc0(1 − 2c0) is added to ensure integrability.

In the rest of this paper we will be concerned with minimization of the free energy F

in the class C with an additional constraint on the mass:∫
[u+ v − 2c0] = m. (3.3)

The Euler–Lagrange equations satisfied by a minimizer will involve the Fréchet derivative

of F; for future reference we first calculate this derivative on its own:

F ′(u, v) · (ū, v̄)

=

∫
[ η′(u)ū+ η′(v)v̄ + α(−ū− v̄) κ∗(u+ v) + α(1 − u− v) κ∗(ū+ v̄)]

=

∫
[η′(u)ū+ η′(v)v̄ + α(ū+ v̄) κ∗(1 − 2u− 2v)]. (3.4)

Using the identification of [L1(�)2]′ with L∞(�)2, and provided u and v are bounded

away from zero, we can write

F ′(u, v) = ( log u+ 1 + α κ∗(1 − 2u− 2v), log v + 1 + α κ∗(1 − 2u− 2v)).

Theorem 1 (Euler–Lagrange equations) Let (u, v) be a solution of the minimization problem

min

{
F(u, v) : (u, v) ∈ C,

∫
(u+ v − 2c0) = m

}
. (3.5)
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Then there exist Lagrange multipliers λ ∈ � and µ ∈ L∞(�) such that

log u− 2α κ∗(u+ v) = λ− µ− τεµ (3.6)

log v − 2α κ∗(u+ v) = λ− µ− τ−εµ. (3.7)

In addition µ � 0 on �, and

supp µ ⊂ Ωs := {x ∈ � : (u+ τ−εu+ v + τεv)(x) = 1}.

The set Ωs is called the saturation set; the word saturation refers to the water volume

fraction being zero in Ωs.

Corollary 2 Let the extended saturation set be defined as

Ωes = {−ε, 0, ε} + Ωs.

Then u = v a.e. on the complement of Ωes.

Proof On the complement of Ωes the right-hand sides of (3.6) and (3.7) both reduce to λ;

therefore u and v coincide. �

Proof of Theorem 1 We use the framework of dual convex cones, as detailed in Ap-

pendix B. Therefore we introduce the affine operator

B : (c0, c0) + L1(�)2 −→ [1 − 4c0 + L1(�)] × � × �,

representing the constraints,

B(u, v) =

(
1 − u− τ−εu− v − τεv,

∫
(u+ v − 2c0) − m,−

∫
(u+ v − 2c0) + m

)
,

such that the set C ′ of admissible functions in (3.5) can be written as

C ′ = { (u, v) ∈ (c0, c0) + L1(�)2 : B(u, v) � 0 }.

Let K ⊂ L1(�)2 be the cone of admissible directions of perturbation, i.e.

K = {(ũ, ṽ) ∈ L1(�)2 : ∃ η > 0 such that (u, v) + η(ũ, ṽ) ∈ C ′}.

Defining the linear operator b as the derivative of B,

b : L1(�)2 −→ L1(�) × � × �,

b(ũ, ṽ) =

(
−ũ− τ−εũ− ṽ − τεṽ,

∫
(ũ+ ṽ),−

∫
(ũ+ ṽ)

)
,
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we can characterize K differently:

K = {(ũ, ṽ) ∈ L1(�)2 : B
(
(u, v) + η(ũ, ṽ)

)
� 0 for some η > 0}

= {(ũ, ṽ) ∈ L1(�)2 : B(u, v) + ηb(ũ, ṽ) � 0 for some η > 0}
= {(ũ, ṽ) ∈ L1(�)2 : b(ũ, ṽ) � −B(u, v)/η for some η > 0}
= {(ũ, ṽ) ∈ L1(�)2 : b(ũ, ṽ)2 = b(ũ, ṽ)3 = 0, b(ũ, ṽ)1(x) � 0 if B(u, v)1(x) = 0}.

Here b(ũ, ṽ)i is the ith component of b(ũ, ṽ). Note that the condition B(u, v)1(x) = 0 in this

last characterization of K is equivalent to x ∈ Ωs. Simplifying the description slightly by

introducing the bounded linear operator

A : L1(�)2 −→ L1(�) × � × �,

A(ũ, ṽ) =

(
(−ũ− τ−εũ− ṽ − τεṽ)χΩs ,

∫
(ũ+ ṽ),−

∫
(ũ+ ṽ)

)
,

where χΩs is the characteristic function of the set Ωs, we can write

K = { (ũ, ṽ) ∈ L1(�)2 : A(ũ, ṽ) � 0 }.

By standard arguments the assumption that (u, v) is a minimizer implies that F ′(u, v) ·
(ũ, ṽ) � 0 for all (ũ, ṽ) ∈ K . Therefore F ′(u, v) ∈ K⊥, and by Lemma 10 this implies that

there exist (µ, λ+, λ−) ∈ L∞(�) × � × �, with µ, λ+, λ− � 0, such that

F ′(u, v) = AT (µ, λ+, λ−)

=
(
−µχΩs − τε

(
µχΩs

)
+ λ+ − λ−, −µχΩs − τ−ε

(
µχΩs

)
+ λ+ − λ−

)
.

Upon redefining µ = µχΩs and setting λ = λ+ − λ− − 1 − α the statement of the theorem

follows. �

Remark 3 Theorem 1 only refers to minimizers, not to stationary points. Following the

proof of Theorem 1, we define a constrained stationary point of F as a pair (u, v) ∈ C ′

with F ′(u, v) · (ũ, ṽ) = 0 for all (ũ, ṽ) ∈ K . Then the assertion of Theorem 1 applies, and in

addition µ ≡ 0.

4 The Critical Micelle Concentration

A well known feature of amphiphile molecules, such as lipids, is the existence of a critical

micelle concentration (CMC) (e.g. see Gelbart et al., 1995, Chap. 1)). If a mixture of lipids

and water is prepared with lipid concentration less than the CMC, then all lipids are

present in monomer form, i.e. no aggregates are formed. If one attempts to exceed the

CMC, however, then it is observed that the monomer concentration does not increase, but

the surplus lipids aggregate into larger structures such as micelles and planar membranes.

In this section we investigate this feature in the simplified model derived above, and

we show that indeed such a behaviour can be recognized in this model. We emulate the

experiment in this model in the following way. Starting with a vessel filled with uniform
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volume fraction (c0, c0), we add a quantity m of lipids, i.e. we consider elements (u, v) of

the set

C ′′ =

{
(u, v) ∈ C : u � c0, v � c0,

∫
(u+ v − 2c0) = m

}
.

We investigate the ‘response of the system’ by considering sequences in C ′′ that minimize

the free energy F , i.e. sequences (un, vn) ∈ C ′′ satisfying

lim
n→∞

F(un, vn) = inf
C ′′
F.

We want to distinguish between aggregation and non-aggregation. We say that a se-

quence (un, vn) ∈ C ′′ aggregates if there exist L > 0 and xn ∈ � such that

lim inf
n→∞

∫ xn+L

xn−L
(un + vn − 2c0) > 0. (4.1)

On the other hand we say that a sequence spreads when no finite region remains different

from the background concentration:

lim
n→∞

sup
x∈�

∫ x+L

x−L
(un + vn − 2c0) = 0 for all L > 0. (4.2)

Note that the supremum over x is necessary to avoid applying the term ‘spreading’ to an

aggregate that moves away to infinity.

There is a small middle ground between the two definitions: it is possible that a

subsequence spreads, so that (4.1) is violated, and that a different subsequence aggregates,

violating (4.2). It is true, however, that a sequence that does not aggregate contains a

spreading subseqence, and vice versa.

Our first result states that if we choose the background volume fraction c0 sufficiently

small, then no aggregate configuration can minimize the energy, and every minimizing

sequence spreads:

Theorem 4 Fix α, ε > 0. There exists 0 < cc � 1/4 such that for all 0 < c0 < cc and for

all m > 0 every minimizing sequence (un, vn) ∈ C ′′ spreads.

On the other hand, for a given background volume fraction c0 we can force the system

to aggregate by choosing α sufficiently large:

Theorem 5 Fix ε > 0 and 0 < c0 < 1/4. There exist αc > 0 and mc > 0 such that for all

α > αc and all m > mc every minimizing sequence aggregates.

Theorem 5 suggests that minimizing sequences have some form of compactness in

L1(�)2, and the numerical experiments that we present below confirm this suggestion. We

hope to return to this issue in a later publication.
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Remark 6 The definition of C ′′ requires the ‘surplus mass’ functions u− c0 and v − c0 to

be non-negative. Without this requirement the minimization problem infC ′′ F may not be

well-posed. This can be seen by taking the specific sequence

un(x) = c0 + n−1 sech(n−4x) sin(n−2x), vn ≡ c0,

for which m = 0 and

F(un, vn) ∼ (η′′(c0) − 2α) n2 as n → ∞.

If η′′(c0) − 2α < 0, then F is not bounded from below on C ′′.

5 Proofs of Theorems 4 and 5

Lemma 7 Let (un, vn) ∈ C ′′ be a spreading sequence. Then

lim inf
n→∞

F(un, vn) � m(η′(c0) + α(1 − 4c0)).

Proof of Lemma 7 Set (un, vn) = (c0 + ūn, c0 + v̄n), such that
∫

(ū + v̄) = m. Using the

identity
∫
κ∗u =

∫
u we write the functional F as

F(u, v) =

∫
[ η(u) + η(v) + α(u+ v) − ζ(c0)] − α

∫
(u+ v) κ∗(u+ v),

so that

F(un, vn) − m(η′(c0) + α(1 − 4c0))

=

∫
[ η(c0 + ūn) − η(c0) − η′(c0)ūn ] +

∫
[ η(c0 + v̄n) − η(c0) − η′(c0)v̄n ]

+ α

∫
[(1 − 2c0 − ūn − v̄n) κ∗(2c0 + ūn + v̄n) − (1 − 2c0)(2c0) − (1 − 4c0)(ūn + v̄n)]

=

∫
[ η(c0 + ūn) − η(c0) − η′(c0)ūn ] +

∫
[ η(c0 + v̄n) − η(c0) − η′(c0)v̄n ]

− α

∫
(ūn + v̄n) κ∗(ūn + v̄n).

The first two terms are non-negative by the convexity of η, and we only need to show

that the last term vanishes.

Set wn = ūn + v̄n � 0 and define

ξ(L, n) = sup
y∈�

∫ y+L

y−L
wn,

so that for each L > 0, ξ(L, n) → 0 as n → ∞. Since κ is symmetric and decreasing away
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from zero, and pointwise bounded by 1/2,∫
wn κ∗wn = wn

∫
κ(y)wn(x− y)wn(x) dx dy

�
1

2

∫
|y|�L

∫
�
wn(x− y)wn(x) dx dy + κ(L)

∫
|y|�L

∫
�
wn(x− y)wn(x) dx dy

�
1

2
ξ(L, n)

∫
wn + κ(L)

(∫
wn

)2

−→ 0 as n, L −→ ∞.

�

Proof of Theorem 4 Lemma 7 gives a lower bound for the energy of a spreading sequence,

and by choosing functions of the form

un(x) = c0 + n−1f(xn−1), vn(x) = c0 + n−1f(xn−1),

where 2
∫
f = m, one shows that this lower bound is sharp:

lim
n→∞

F(un, vn) = m(η′(c0) + α(1 − 4c0)).

We now show that this limit value is optimal when c0 is small. For a given admissible

pair (u, v), we set (u, v) = (c0 + ū, c0 + v̄), such that
∫
(ū+ v̄) = m. Then

F(u, v) − m[η′(c0) + α(1 − 4c0)]

=

∫
[ η(c0 + ū) − η(c0) − η′(c0)ū ] +

∫
[ η(c0 + v̄) − η(c0) − η′(c0)v̄ ]

− α

∫
(ū+ v̄) κ∗(ū+ v̄)

Using the estimate ∫
f κ∗f �

∫
f2,

we find

F(u, v) − m[η′(c0) + α(1 − 4c0)]

�

∫
[ η(c0 + ū) − η(c0) − η′(c0)ū ] +

∫
[ η(c0 + v̄) − η(c0) − η′(c0)v̄ ] − α

∫
(ū+ v̄)2

�

∫
(h(ū) + h(v̄)),

where h is given by

h(ū) = η(c0 + ū) − η(c0) − η′(c0)ū− 2αū2.

Using η′′(0+) = ∞ it is easily verified that if c0 > 0 is sufficiently small, then there exists

β > 0 such that

h(ū) � βū2 for all 0 � ū � 1.
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Therefore,

F(u, v) − m[η′(c0) + α(1 − 4c0)] � β

∫
[ (u− c0)

2 + (v − c0)
2 ].

It follows that if (un, vn) ∈ C ′′ is a minimizing sequence, then (un − c0, vn − c0) → 0 in

L2(�)2. The spreading (4.2) then follows from the inequality

∫ x+L

x−L
|un + vn − 2c0| �

√
2L

(∫ x+L

x−L
(un + vn − 2c0)

2

)1/2

.

�

Proof of Theorem 5 As we saw above the energy of a spreading sequence is equal to

m[η′(c0) + α(1 − 4c0)]. (5.1)

Below we exhibit a function (u, v) with energy F(u, v) less than this value (say F0). This

proves Theorem 5 by the following argument. Minimizing sequences must have limit

energy values less than or equal to F0, and therefore strictly less than (5.1). If the sequence

does not aggregate, then there exists a subsequence that spreads; along this subsequence

the energy converges to a value larger than or equal to (5.1). This is a contradiction.

Set mc = ε(1 − 2c0), and assume that mc � m � 2mc. We now construct a function (u, v)

with energy less than (5.1). Set

u(x) = v(x) =




1

2
if 0 < x <

m

1 − 2c0
,

c0 otherwise.
(5.2)

Then
∫

(u − c0) =
∫

(v − c0) = m/2 and u + τ−εu + v + τεv � 1, so that (u, v) ∈ C ′′. Again

writing (ū, v̄) = (u− c0, v − c0), we have

F(u, v) − m[η′(c0) + α(1 − 4c0)]

=

∫
[ η(c0 + ū) − η(c0) − η′(c0)ū ] +

∫
[ η(c0 + v̄) − η(c0) − η′(c0)v̄ ]

− α

∫
(ū+ v̄) κ∗(ū+ v̄)

= 2
m

1 − 2c0
[ η(1/2) − η(c0) − η′(c0)(1/2 − c0) ] − 4α

∫
ū κ∗ū.

Using the explicit calculation

∫
χ[0,�] κ∗χ[0,�] = e−� − 1 + �
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where χA is the characteristic function of the set A, we have

F(u, v) − m[η′(c0) + α(1 − 4c0)]

=
4m

1 − 2c0
[ η(1/2) − η(c0) − η′(c0)(1/2 − c0) ]

− α(1 − 2c0)
2

[
exp

(
− m

1 − 2c0

)
− 1 +

m

1 − 2c0

]
.

We can now choose αc > 0 such that the right-hand side is negative for all α > αc and for

all mc � m � 2mc.

For values of m larger than mc, we split the total mass m into n parts of size in [mc/2, mc].

For each part i = 1, . . . , n, we construct a function (ui, vi) of the type (5.2); we assemble these

in the following way: choose numbers �i, i = 1, . . . , n, with �i+1 − �i > 2ε+mc/(1 − 2c0).

Then the function (u, v) is given by

(u, v)(x) = (c0, c0) +

n∑
i=1

[(ui, vi)(x− �i) − (c0, c0)].

The function F is additive with respect to this type of addition, and we therefore conclude

that

F(u, v) − m[η′(c0) + α(1 − 4c0)] < 0,

whenever α > αc (which is given above). This proves the assertion. �

6 A (nearly) explicit solution

A stationary point (u, v) which is such that the pointwise inequality (3.1) is not saturated

anywhere on � solves the Euler–Lagrange equations (see Remark 3)

log u− 2α κ∗(u+ v) = λ,

log v − 2α κ∗(u+ v) = λ.

Therefore u ≡ v, and the two Euler-Lagrange equations for u and v reduce to a single

equation,

log u− 4α κ∗u = λ. (6.1)

Using the value at infinity we determine that λ is equal to log c0 − 4αc0, so that (6.1) can

be written as

log
u

c0
= 4α κ∗(u− c0). (6.2)

Set φ = κ∗(u− c0), so that

−φ′′ + φ = u− c0 on �. (6.3)

Combining (6.2) and (6.3) we find

−φ′′ + φ = c0(e
4αφ − 1) on �.
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φ

G(φ)

Figure 4. The form of the potential G for αc0 < 1/4.

m/2

α
0 2.5

5

Figure 5. The curve of semi-explicit solutions given by (6.4). The solid line indicates solutions

satisfying the pointwise constraint (3.3), the dotted line solutions that violate this constraint. Here

c0 = 0.1 and ε = 1.

This equation can be integrated to obtain

1

2
φ′2 + G(φ) = 0, (6.4)

with

G(φ) = −1

2
φ2 +

c0

4α
(e4αφ − 1 − 4αφ).

The value of the constant of integration has been determined by requiring that solutions

converge to zero at infinity. For this equation to have such a solution it is necessary that

zero be a local maximum of G, or

αc0 <
1

4
.

In this case, the aspect of G is as shown in Figure 4. At the bifurcation point αc0 = 1/4

the minimum in this figure coalesces with the local maximum at zero, leaving the function

G monotonic.

Figure 5 shows the dependency of the additional mass that is contained in such a

solution. At the point marked with a circle the constraint is first violated.

We now turn briefly to the stability of this solution. Figure 5 shows that the mass of a

solution decreases as α increases. For a stable solution this is surprising: we would expect
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the mass in a global minimizer to increase when we increase the destabilizing effect of the

energy term multiplied by α.

On the other hand, this parameter dependence is exactly what one expects for a saddle

point connecting two valleys, a mountain pass. Certainly the solution is unstable.

Theorem 8 A stationary point (u, v) for which the inequality in (3.1) is not saturated any-

where on � is not a local minimizer under the constraint (3.3).

Proof By the arguments above the lack of saturation of the inequality in (3.1) implies that

u ≡ v. Abusing notation and writing F(u) for F(u, u), we show below that the stationary

point u is not a minimizer of F(·) under constraint. It follows that (u, u) is not a minimizer

of F(·, ·) in C either.

We first calculate the second derivative of F at u in the particular direction w = u− c0:

F ′′(u) · w · w = 2

∫
w2

u
− 8α

∫
w κ∗w

(6.2)
= 2

∫ [
w2

u
− w log

u

c0

]

= 2

∫
wc0

u

[
u

c0
− 1 − u

c0
log

u

c0

]
.

Since the function s → s− 1 − s log s is negative for all s� 1, F ′′(u) · w · w < 0, i.e. w is a

negative direction of F ′′(u).

Under the constraint of constant integral, perturbations should have zero integral, and

therefore w is not an admissible perturbation. However, on unbounded domains, the set{
f ∈ L∞ ∩ L1(�) :

∫
f = 0

}

is dense in L∞ ∩L1(�) in the L2-topology. This may be seen as follows: fix η ∈L∞ ∩L1(�)

with
∫
η = 1. For f ∈ L∞ ∩ L1(�) the sequence defined by

fn(x) = f(x) − 1

n
η(x/n)

∫
f

has zero integral, and converges to f in L2:

‖f − fn‖2
L2 =

1

n2

(∫
f

)2

‖η(x/n)‖2
L2 =

1

n

(∫
f

)2 ∫
η(y)2 dy.

Consequently, using the continuity of the bilinear operator (s, s) → F ′(u) · s · s on L2,

inf
w∈L∞∩L1(�)∫

w2=1∫
w=0

F ′′(u) · w · w = inf
w∈L∞∩L1(�)∫

w2=1

F ′′(u) · w · w < 0.

This concludes the proof. �
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tails
heads
water

−15 0 15

0

1

(a) ε = 1

tails
heads
water

−40 0 40
(b) ε = 5

Figure 6. Stationary ‘single-membrane solutions’. Plotted are the concentrations of tails (u + v),

heads (τ−εu+ τεv), and water (1 − u− τ−εu− v− τεv). Parameters were α = 4, ε ∈ {1, 5}, L = 100, and

K = 1000. For both choices of ε the structure is well localized, but for larger ε the internal separation

of heads and tails is much better developed. Note the saturation zone (zero water concentration) in

the middle of the membrane.

7 Numerical results

In addition to the analytical results given above we present a first numerical result. We

seek local minima of F under constraints, i.e. solutions of the minimization problem (3.5).

We implemented a constrained L2-gradient flow algorithm for the free energy functional F ,

under the constraint of constant mass (3.3). The constraint of positive water concentration

was implemented by adding a penalization term (K/2)
∫

(u+ τ−εu+ v + τεv − 1)2+ to F .

The resulting equations are

ut = − log u+ 2α κ∗(u+ v) + λ− µ− τεµ,

vt = − log v + 2α κ∗(u+ v) + λ− µ− τ−εµ,

where λ is a Lagrange multiplier and µ is given by

µ = K(u+ τ−εu+ v + τεv − 1)+.

For the numerical approximation a finite domain [−L,L] was chosen. On such a finite

domain the ‘background concentration’ c0 loses its special status; for instance, under

constraint of given total mass on [−L,L] the value of u+ v at the boundaries x = ±L is

free to change (and does change).

For the calculation of the convolution κ∗(u+ v) the u+ v was considered to be constant

on [L,∞) (and equal to the value at x = L).

The functions u and v were discretized in space on a uniform grid; the convolution

integral was approximated by the midpoint rule. The resulting system of differential-

algebraic equations was solved by an implicit ODE solver.

Figure 6 shows two examples of ‘membranes’ that were found in this way.
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8 Discussion

There is a clear rationale for pushing the continuum description of living systems as far

as possible. Continuum models have proven both to be convenient objects for theoretical

study, thereby giving an important type of theoretical insight into the underlying system,

and to provide an efficient framework for numerical simulation.

In the case of living cells the representation of chemical reactions in a continuum

framework is well understood. The mechanical side of cellular function, however, is

much less well developed; although models are available for various parts of the cellular

machinery, integration of such descriptions into a complete continuum formulation is not

yet feasible.

It is one of the challenges for such a continuum formulation to capture the mechanical

behaviour of lipid bilayers. In this paper we have shown that a simple, one-dimensional

model is capable of reproducing a minimal set of properties: for certain choices of the

parameters membrane-like structures exist and are (at least numerically) locally stable. In

addition, the occurrence or non-occurrence of membrane-like structures depends on the

background concentration c0 in a way that is consistent with experiments.

It is too early to answer all of the questions raised in the introduction, but from

this model we can point ahead. For instance, Figure 6 suggests that strong separation

of heads and tails requires a separation of length scales, in that the head-tail distance

should be larger than the decay length of the hydrophobic effect (i.e. the decay of κ); one

interpretation of this feature is that the linear geometry of the lipid molecule is relevant

to the separation. As another example, the heads in this paper are hydrophilic, and in

fact comparable to ‘attached water beads’. We need to study the effect of replacing the

hydrophilic heads by neutral heads, which simply act as space-fillers. Finally, for the pref-

erence of bilayers vs. micelles we will study different structure geometries (e.g. the spherical

micelle geometry) and compare the energy levels of these structures with the membrane-

like geometry of this paper.

Appendix A The three-dimensional model

The description that we use leans heavily on the ‘mesoscopic dynamics’ framework

introduced by Fraaije and his coworkers (Fraaije, 1993; Fraaije et al., 1997).

For the derivation of the model we start at a microscopic, sub-continuum scale. We

consider a vessel, represented by Ω ⊂ �3, containing Nw water molecules and N� lipid

molecules. Each lipid molecule is represented by a collection of n connected ‘beads’; water

molecules consist of a single bead. The variable Xj
w represents the position of water

molecule j, 1 � j � Nw , and takes values in Ω. The position of bead i of lipid j, 1 � i � n,

1 � j � N�, is Xi,j
� , and the set of bead positions of a single lipid molecule (X1,j

� , . . . , X
n,j
� )

takes values in a subset V ⊂ Ωn. In many cases V will simply coincide with Ωn; however,

for the important class of models with rod-like links between the beads, V is a strict

subset of Ωn. The full state space for the system is therefore

X = ΩNw × VN� .

Elements X = (X1
w, . . . , X

Nw
w , X

1,1
� , . . . , X

n,1
� , X

1,2
� , . . . , X

n,N�

� ) ∈ X are called microstates.
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We describe the system in terms of probabilities on X, i.e. the (probabilistic) state ψ is

a probability measure on X:

ψ ∈ E, where E =

{
ψ : X → �+,

∫
X
ψ = 1

}
.

We assume that neither the microstates themselves nor the measure ψ can be observed

at the continuum level; the observables are three derived quantities, the volume fractions

of water, of heads, and of tails. ‘Heads’ and ‘tails’ refer to a colouring of the beads of

the lipids: we choose sets Ih, It ⊂ {1, . . . , n} as those beads that belong to the head(s)

or to the tail(s). For simplicity we assume that all beads are either heads or tails, or

Ih ∪ It = {1, . . . , n}.
For a given probability measure ψ ∈ E, the water volume fraction rw(ψ) : Ω → �+ is

defined by

rw(ψ)(x) = vw

Nw∑
j=1

∫
X
ψ δ

(
Xj
w − x

)
dX for all x ∈ Ω.

Here vw is the volume fraction of a single water bead. Similarly, we define the head and

tail volume fraction by

rh(ψ)(x) = vh

Nw∑
j=1

∑
i∈Ih

∫
X
ψ δ

(
X
i,j
� − x

)
dX, x ∈ Ω

rt(ψ)(x) = vt

Nw∑
j=1

∑
i∈It

∫
X
ψ δ

(
X
i,j
� − x

)
dX, x ∈ Ω.

To specify the behaviour of the system we introduce two free energy functionals. The

‘ideal’ free energy F id : E → � models the effects of entropy and the interactions between

beads of a single molecule; the ‘non-ideal’ free energy Fnid : E → � represents the

interactions between the beads of different molecules. The total free energy is the sum of

the two,

F(ψ) = F id(ψ) + Fnid(ψ).

For F id we postulate

F id(ψ) = kT

∫
X
ψ logψ +

∫
X
ψH id.

The first term is the Boltzmann–Gibbs entropy. In the second term the function H id :

X → � is the internal energy of a microstate, where the superscript ‘id’ again refers to a

restriction to interaction within a single molecule. We assume that H id has the form

H id(X) =

N�∑
j=1

h
(
X

1,j
� , . . . , X

n,j
�

)
The choice of h defines the interactions within a single lipid molecule, and we expect

this choice to have a significant influence on the properties ofthe model. We therefore
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briefly list some examples:

(1) Two beads with a rigid link: n = 2, and V is a true subset of Ω2:

V = {(X1, X2) ∈ Ω2 : |X1 −X2| = ε},

where ε is the length of the link. Since deformation is not possible in this setup,

h ≡ 0. The main body of this paper is based on this lipid structure.

(2) Two beads with a linear spring link: n = 2, V = Ω2, and

h(X1, X2) =
k

2
[|X1 −X2| − ε]2

where ε � 0 is the neutral length of the spring.

(3) A linear chain of beads connected by springs: Here V = Ωn, and

h(X1, . . . , Xn) =

n−1∑
i=1

ki

2
[|Xi −Xi+1| − εi]

2.

Obviously many other variations are possible.

For the non-ideal free energy Fnid we make an important simplifying assumption: Fnid

can be written as a function of only the observables,

Fnid(ψ) = Fnid(rw(ψ), rh(ψ), rt(ψ)).

Typical terms in the non-ideal energy Fnid are a convolution integral, in which proximity

of hydrophilic (heads and water) beads and hydrophobic tail beads is penalized:∫
Ω

∫
Ω

(
rw(ψ)(x) + rh(ψ)(x)

)
rt(ψ)(y) κ(x− y) dx dy,

and a compressibility term that penalizes deviation from unit total volume:

1

2

∫
Ω

(
rw(ψ)(x) + rt(ψ)(x) + rh(ψ)(x) − 1

)2
dx.

We now turn to the continuum scale. Our unknowns at this scale are the volume

fractions of water, of heads, and of tails; we denote these by ρw , ρh, and ρt. Note the

difference with the previously introduced rw , rh, and rt: the former are the unknowns in

the continuum problem, the latter are operators that map probability measures in E to

volume fractions on Ω. However, if ψ is the microscopic probabilistic state belonging to

the continuum state (ρw, ρh, ρt), then the two coincide:

ρw,h,t(x) = rw,h,t(ψ)(x) for all x ∈ Ω.

For the unknowns (ρw, ρh, ρt) we postulate the evolution equations

∂ρα
∂t

= div

[
ρα∇

(
Uα +

∂

∂ρα
Fnid

)]
, α = w, h, t. (A 1)
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Here we identify the Fréchet derivative ∂/∂ραF
nid with its L2-gradient, i.e. ∂/∂ρhF

nid

should be interpreted as the function v ∈ L2(Ω) satisfying∫
Ω

v φ =
∂

∂ρh
Fnid(ρh, ρt, ρw) · φ for all φ ∈ L2(Ω).

The chemical potential Uα is determined by solving the minimization problem

min{F id(ψ) : ψ ∈ E, rw,h,t(ψ) = ρw,h,t}. (A 2)

The Euler-Lagrange equation for the minimizer ψ reads

(F id)′(ψ) · ψ̃ − λ

∫
X
ψ̃(X) dX −

∑
α=w,h,t

∫
Ω

Uα(x)rα(ψ̃)(x) dx = 0, (A 3)

for any ψ̃ : X → �. The chemical potentials Uα : Ω → � arise as Lagrange multipliers

associated with the constraints on rα. Since F id is smooth and strictly convex, the mapping

(ρw, ρh, ρt) → (Uw,Uh,Ut)

is well-defined and smooth.

The interpretation of this setup is as follows. There is a separation of time scales:

changes in the microstate that conserve the observables rw,h,t happen on a shorter time

scale than changes in the observables themselves. At the observable time scale we therefore

assume that the system is in equilibrium with respect to the fast degrees of freedom. This

is achieved by minimizing the free energy under constraint, as in (A 2).

Remark 9 The evolution equations (A 1) can be viewed as the gradient flow of the free

energy F with respect to a metric of the Wasserstein type in the three unknowns ρw, ρh, ρt:

gρα

(
∂ρα
∂t
, s

)
= − ∂F

∂ρα
· s ∀s, ∀α = w, h, t

where gρα (·, ·) is the Wasserstein metric tensor (e.g. Otto 2001).

At this stage the model derivation proper is complete; the resulting system is expected to

be well-posed in a reasonable sense (we will return to this question in a future publication).

However, we can simplify the description considerably without losing generality.

Written in full the Euler-Lagrange equation (A 3) reads

kT

∫
X
(logψ + 1)ψ̃ +

∫
X
ψ̃H id − λ

∫
X
ψ̃ − vw

Nw∑
j=1

∫
X
Uw

(
Xj
w

)
ψ̃(X) dX

− vh

N�∑
j=1

∑
i∈Ih

∫
X
Uh

(
X
i,j
�

)
ψ̃(X) dX − vt

N�∑
j=1

∑
i∈It

∫
X
Ut

(
X
i,j
�

)
ψ̃(X) dX = 0,
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for all ψ ∈ L1(X), implying that

ψ(X) = C exp

{
1

kT

[
−H id(X) + vw

Nw∑
j=1

Uw

(
Xj
w

)

+ vh

N�∑
j=1

∑
i∈Ih

Uh

(
X
i,j
�

)
+ vt

N�∑
j=1

∑
i∈It

Ut

(
X
i,j
�

) ]}
,

where C is a normalization constant. We can therefore decompose ψ as

ψ(X) =

Nw∏
j=1

ψw
(
Xj
w

) N�∏
j=1

ψ�
(
X

1,j
� , . . . , X

n,j
�

)
.

The microscopic state function ψ has been replaced by two single-molecule state functions

ψw and ψ�, which satisfy

ψw(x) = Cw exp{vwUw(x)/kT } (A 4)

ψ�(X
1, . . . , Xn) = C� exp

{
1

kT

[
−h(X1, . . . , Xn) + vh

∑
i∈Ih

Uh(X
i) + vt

∑
i∈It

Ut(X
i)

]}
. (A 5)

It follows that

rw(ψ)(x) = vwNwψw(x)

rh,t(ψ)(x) = vh,tN�

∑
i∈Ih,t

∫
V

ψ�(X
1, . . . , Xn)δ(x−Xi)

Using this description we can rework the equations (A 1–A 2–A 3) into a more con-

venient form, by eliminating the microscopic state ψ. The equations (A 1) remain the

same:

∂ρα
∂t

= div

[
ρα∇

(
Uα +

∂

∂ρα
Fnid

)]
, α = w, h, t, (A 6)

but we now specify the relationship between ρα and Uα directly. For water,

1

vwNw

ρw = Cw exp{vwUw(x)/kT }, with C−1
w =

∫
Ω

exp{vwUw(x)/kT }. (A 7)

For heads and tails, the equations are

1

vh,tN�

ρh,t = C�

∫
V

[ ∑
i∈Ih,t

δ(x−Xi)

]

× exp

{
1

kT

[
−h(X1, . . . , Xn) + vh

∑
i∈Ih

Uh(X
i) + vt

∑
i∈It

Ut(X
i)

]}
(A 8)
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where again

C−1
� =

∫
V

exp

{
1

kT

[
−h(X1, . . . , Xn) + vh

∑
i∈Ih

Uh(X
i) + vt

∑
i∈It

Ut(X
i)

]}
. (A 9)

When supplemented with a definition of Fnid, the equations (A 6–A 9) constitute a closed

system.

The equation for water can be simplified even further. From (A 7) it follows that

∇ρw(t, x) =
vw

kT
ρw(t, x)∇Uw(t, x), (A 10)

so that equation (A 6) for ρw can be written as

∂

∂t
ρw =

kT

vw
∆ρw + div

[
ρw∇

(
∂

∂ρw
Fnid

)]
.

Note that, as demonstrated by this equation, the effect of the entropy in the ideal free

energy is to include a diffusive term in the equations.

Appendix B Cones and duality

In this appendix we briefly recall some facts on duality cones.

Let X be a Banach space, and let P ⊂ X be a closed convex cone. The dual cone

P⊥ ⊂ X ′ is defined as

P⊥ = {f ∈ X ′ : 〈f, u〉 � 0 ∀ u ∈ P},

and is again closed and convex.

We now introduce a second Banach space Y , and a bounded linear operator A : Y → X.

Let K be the following cone in Y :

K = {u ∈ Y : Au ∈ P},

and its dual is by definition

K⊥ = {f ∈ Y ′ : 〈f, u〉 � 0 ∀ u ∈ K}.

Our main result is a characterization of the dual cone K⊥:

Lemma 10 K⊥ = {ATg ∈ Y ′ : g ∈ P⊥}.

Note that Lemma 10 does not require X or Y to be reflexive; therefore some arguments

need careful attention. We use the following result:

Lemma 11 If C is a closed convex cone in a Banach space X, then C⊥⊥ ∩X = C .

Proof of Lemma 11 First the inclusion C ⊂ C⊥⊥ ∩X: if u ∈ C , then

∀ f ∈ C⊥, 〈f, u〉 � 0.

Therefore, u ∈ C⊥⊥.
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C⊥⊥ ∩ X ⊂ C: suppose that u ∈ C⊥⊥ ∩ X, u � C . By the Hahn–Banach theorem (e.g.

Brezis 1983) there exists f ∈ C⊥ such that 〈f, u〉 < 0. But this contradicts the assumption

that u ∈ C⊥⊥. �

Proof of Lemma 10

Set M = {ATg ∈ Y ′ : g ∈ P⊥}.
M ⊂ K⊥: let ATg ∈ M, implying that g ∈ P⊥. Then

∀ u ∈ K, 〈ATg, u〉 = 〈g, Au〉 � 0.

Therefore ATg ∈ K⊥.

K⊥ ⊂ M: we first show that M⊥ ⊂ K . If u ∈ M⊥, then by definition

〈f, u〉 � 0 for all f ∈ M,

so that

〈ATg, u〉 � 0 for all g ∈ P⊥

=⇒ 〈g, Au〉 � 0 for all g ∈ P⊥

=⇒ Au ∈ P⊥⊥ ∩X = P,

implying that u ∈ K , and therefore that M⊥ ⊂ K . By Lemma 11 it now follows that

K⊥ ⊂ M⊥⊥ ∩ Y ′ = M. �
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